BASE LINE SUSCEPTIBILITY OF BEMISIA TABACI (HEMIPTERA: ALEYRODIDAE) TO PYRIPROXYFEN UNDER LAB CONDITIONS

Zulfiqar Ali1, Maqbool Shah2, Ahmed Nawaz3, Muhammad Nadeem4, Muhammad Rafiq Shahid5, Muhammad Farooq6

1Pest warning and Quality Control of Pesticides Mianwali, Pakistan
2Pest warning and Quality Control of Pesticides Bahawalpur, Pakistan
3Pest warning and Quality Control of Pesticides, Multan, Pakistan

ABSTRACT
A systemic bioassay was carried out using cuttings of stem from cotton seedlings for baseline susceptibility of whitefly from district Bahawalpur, Punjab Pakistan. Bioassay studies were conducted by using a leaf dip bioassay method to determine the susceptibility of Bemisia tabaci to pyriproxyfen. Experiments were conducted for a susceptible laboratory colony and for 10 field collected populations during 2011 and 2012.. It was observed that all the B. tabaci populations were susceptible to pyriproxyfen. Baseline data of the susceptible colony showed a pooled LC50 and RR50 values of 0.039 and 2.316 mg ai L-1, respectively. LC50 values for field populations of B. tabaci ranged from 0.63 to 0.86 mg [AI] L-1 during 2011 and from 0.46 to 2.08 mg [AI] L-1 during 2012. No population had a RR50 value over 3.5 in either year and the fiducially limits of the LC50 values for the field and laboratory populations overlapped, indicating no differences among them. Pyriproxyfen is a promising tool in integrated pest management programs for B. tabaci, particularly where field populations have developed resistance to other insecticide groups. The laboratory and field baseline toxicity data generated in this study of field populations of B. tabaci confirmed their susceptibility to pyriproxyfen and would be useful in documenting any future changes in the susceptibility of the whitefly to the insecticide.

Keywords: Baseline susceptibility, pyriproxyfen, Bemisia tabaci, cotton, Host plants

INTRODUCTION
Pesticides are considered by many people to be essential to our everyday existence, or at least to our current standard of living. They have played a major role in humankind's efforts to grow and store enough food to feed it. Pesticides also have saved many human lives by reducing the impact of diseases that are transmitted by insects. For global agriculture, the use of pesticides is the most important and effective way to control pests; (Ahmed et al. 2010). Over the next 25 years, the increased world population will require an increase in food production of some 60% over current levels of production (Hall, 1999).
Furthermore, rising costs of crop production have forced farmers to intensify their efforts to achieve maximum yield per hectare of farm land. This situation has lead to an increase in the use of synthetic pesticides (Curtis, 1995). Using pesticides is considered the most important factor in changing productivity patterns, either directly or indirectly. In maize, for example, there has been a 3-fold increase in yield since 1950 due to improved varieties, fertilizer, and crop management as use of pesticides (Ball et al., 1997). Pimentel et al. (1992) estimated that crop losses would increase by 10% (from current estimates of cost 30 %) if no pesticides were used at all, and for specific crops, losses might reach 100%.

Chlorantraniliprole (Rynaxypyr®, DPX-E2Y45, Coragen®, DuPont Crop Protection, Wilmington, Delaware) is a xylem systemic insecticide with a new mode of action in the new anthranilic diamide chemical class (DuPont, 2008). Chlorantraniliprole role has demonstrated efficacy in the field against biotype of B. tabaci, especially when applied to the root zone (Portillo et al., 2008; Schuster et al., 2008), and has been shown to be safe to non-target arthropods, including pollinators, numerous beneficial insects and predatory mites (Dinter et al., 2008; DuPont, 2008; Preetha et al., 2009; Brugger et al., 2010; Shaw & Wallis 2010; Gradish et al., 2010, 2011). Because of the potential for the development of resistance of B. tabaci to insecticides, a resistance management program was initiated in Florida in 2000 (Schuster & Thompson, 2001).

As new products are developed for use in managing B. tabaci, it is necessary to develop a base line susceptibility data base prior to the registration and commercial use of the product that can be used as reference for future resistance monitoring efforts. Nymph stages of white flies are affected more rapidly than the adults and the nymphs treated with spiromesifen did not molt properly and failed to reach adulthood (Nauen et al., 2005). To date active ingredient has not been reported to show cross resistance with any insecticide for which resistant mite or white fly field populations have been identified (Palumbo, 2004).Therefore, the objectives of the present investigation were to develop a bioassay in 2014 for estimating the susceptibility of B. tabaci to pyriproxyfen and to use the bioassay to establish the baseline susceptibility of field-collected populations in Punjab Pakistan.

MATERIALS AND METHODS

Host Plant and Susceptible Whitefly Colony
Cotton (Gossypium hirsutum L.) has already been used in bioassays (Schuster et al., 2010; Caballero et al., 2013), so in this study as host plant it was selected in the bioassays. For non-infested environment green house was used and seedlings were grown in pots. B. tabaci population was maintained on tomato plants (Solanum lycopersicum L.) under controlled conditions in laboratory without acquaintance to insecticides and without reintroduction of whiteflies from the field to compare the susceptibility of field populations to pyriproxyfen. In this experiment, adult whiteflies from the original susceptible colony were used to preparea new colony on cotton plants.

Field Populations
The populations of B. tabaci were established by collecting nymph-infested foliage from tomato fields in district Bahawalpur. In 2011, five populations were collected and in spring 2012 additional six populations were collected and were maintained at 26°C, placed in cages (60 x 60 x 60cm) with non-infested cotton plants. F1 generations were obtained and maintained on host plants for the whole duration of experiments. For sufficient adult’s population as to conduct experiments these populations were reared to F2-F4 generations.

Systemic Bioassay
Modified EARML method developed for the insect growth regulator Buprofezin and was also used to develop baseline susceptibility data for anthranilidiamides (Cahill et al., 1996c; Li et al., 2012; Caballero et al., 2013) was used for this bioassay. For bioassay 10 to 12 adults of whitefly were aspirated (unknown gender and age) and then transferred on the surface of leaf (abaxial) to lay eggs. Then after 24 hours eggs were counted under stereoscope. To avoid first instar migration from leaves and competition 20 eggs per leaf were adjusted. The height of 15 cm was standardized by cutting each stem from the growth point and its base, in order to ensure the uptake of insecticide homogeneously. Water treated samples were considered as control. Stem cuttings were placed in the solutions of insecticide (pyriproxyfen) in 12 mm diam × 60 mm vials then these vials were kept in the cages and were maintained at 26 °C for 2 weeks to monitoring the hatching of eggs up to the development of 2nd instar’s nymphs. Eggs and 1st instar nymph’s mortality was checked by subtracting the surviving 2nd instar nymph from initial eggs applied.

Statistical Analyses
Standard probate analysis was done to analyze the data as to estimate LC50 values, fiducially limits (FL), slope and standard error (SE) of the regression line along with
the chi square value (X^2) (SAS Institute, 1994). For each population the resistance ratio at 50 % mortality (RR$_{50}$) was calculated by dividing its LC$_{50}$ value. Four replications for each experiment were done and the entire experiment was repeated 3 times on different dates over a period of a month with the susceptible colony to assess the consistency of the systemic bioassay. Fiducially limits of the LC$_{50}$ values were compared to determine significant differences between field and laboratory colonies. The slopes of field populations and laboratory colonies were compared to check differences between both populations within years using covariance analyses (SAS Institute, 1994).

RESULTS
Pyriproxifen showed excellent toxicity to the field collected and susceptible laboratory B. tabaci nymphs in 2008 prior to the field use of Pyriproxyfen in Pakistan. All whitefly populations had estimated LC$_{50}$ values between 0.53 and 0.86 mg [AI] L$^{-1}$, with the lower value corresponding to the susceptible laboratory colony (Table 1). No colony had a RR$_{50}$ (resistance ratio) value above 2.0 and the fiducial limits of the LC$_{50}$ values for the laboratory and field populations overlapped, indicating no differences among them. The average LC$_{50}$ and RR$_{50}$ values for all of the field-collected populations were 0.74 mg [AI]L$^{-1}$ and 1.4, respectively.

Bioassays conducted in 2012 (Table 2) confirmed susceptibility of B. tabaci to Pyriproxyfen. The laboratory colony had an estimated LC$_{50}$ value of 0.59 mg [AI] L$^{-1}$. LC$_{50}$ values of field collected populations ranged from 0.56 to 2.08 mg [AI] L$^{-1}$. None of the colonies had RR$_{50}$ values above 3.5. The average of the LC$_{50}$ values of the field-collected B. tabaci populations of 2012 was slightly higher than the average LC$_{50}$ value of 2011; however, as in 2012, fiducial limits of the LC$_{50}$ values for the laboratory and field populations coincided, indicating minimum or zero differences among them. The average LC$_{50}$ and RR$_{50}$ values for 2012 were 1.06 and 1.79 mg [AI] L$^{-1}$, respectively.

DISCUSSION
Baseline susceptibility bioassays in 2011 confirmed the full susceptibility of B. tabaci nymphs of the laboratory and field populations collected from 4 locations in Pakistan in the absence of Pyriproxyfen exposure. The susceptibility was retained in 2012 when 3 of the tested populations were exposed to Pyriproxyfen before collection of nymphs. The LC$_{50}$ values for field populations over both 2011 and 2012 ranged from 0.46 to 2.08 mg [AI]L$^{-1}$, which was 4.5-fold difference in susceptibility.
This contrasts with results in Arizona and California where a 29-fold difference in susceptibility of field populations collected in 2005-2006 was observed (0.21 to 6.08 mg [AI] L\(^{-1}\)) (Prabhaker et al., 2008). No populations in the present study indicated RR\(_{50}\) values over 3.5 in either 2011 or 2012. Although the average RR\(_{50}\) value for the year 2012 was slightly higher than the RR\(_{50}\) value during 2011, this may be attributed to the differences in persons who conducted the bioassays or to the variability in the field populations. Six of the 8 populations tested in 2006 against spiromesifen showed reduced susceptibility (RR\(_{50}\) values ≥ 10) to imidacloprid and thiamethoxam (Schuster et al., 2010), thus indicating the absence of any cross resistance between Pyriproxifen and these neonicotinoids. Likewise, no cross resistance was detected in a laboratory strain selected for imidacloprid resistance (Prabhaker et al., 2008).

The RR\(_{50}\) values obtained in the present study also were within the range of RR\(_{50}\) values obtained elsewhere for B. tabaci biotypes B and Q, including neonicotinoid and pyriproxyfen resistant strains (Nauen et al., 2005). Although no resistance was observed to Pyriproxyfen under laboratory and field conditions, up to 15 fold resistance to spirodiclofen (another lipid biosynthesis inhibitor) in Tetranychusurticae Koch under selection pressure has been demonstrated (Nauen and Konanz 2005). Pyriproxifen has been reported to be safe to key beneficial arthropods (Kavitha et al., 2006; Lakshmi et al., 2006; Irigaray et al., 2007; Bielza et al., 2009). Toxicity of Pyriproxifen to B. tabaci in the absence of cross resistance to neonicotinoids, spiromesifen and conventional insecticides suggest that Pyriproxyfen can be a valuable tool in management of insecticide resistance in B. tabaci in vegetable crops. The possibility of rapid development of resistance in B tabaci to almost all classes of insecticides demands continuous resistance monitoring for Pyriproxyfen along with its judicious use in the field.

REFERENCES

Table 1: Susceptibility of whitefly nymphs from field populations to Pyriproxyfen during 2011 by using a leaf dips bioassay method

<table>
<thead>
<tr>
<th>Site</th>
<th>Crop</th>
<th>n</th>
<th>χ^2</th>
<th>P</th>
<th>LC_{50} (mg [AI] L$^{-1}$)</th>
<th>Fiducial Limits</th>
<th>RR$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab colony</td>
<td>Cotton</td>
<td>302</td>
<td>0.34</td>
<td>0.79</td>
<td>0.50</td>
<td>0.28 - 0.61</td>
<td>0.61</td>
</tr>
<tr>
<td>Mianwali</td>
<td>Cotton</td>
<td>273</td>
<td>2.83</td>
<td>0.63</td>
<td>0.69</td>
<td>0.59 - 1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>Bahawalpur</td>
<td>Tomato</td>
<td>508</td>
<td>19.86</td>
<td><0.001</td>
<td>0.81</td>
<td>0.43 - 1.77</td>
<td>1.53</td>
</tr>
<tr>
<td>Layyah</td>
<td>Tomato</td>
<td>997</td>
<td>23.3</td>
<td><0.001</td>
<td>0.69</td>
<td>0.39 - 0.99</td>
<td>1.08</td>
</tr>
<tr>
<td>Multan</td>
<td>Cotton</td>
<td>413</td>
<td>10.8</td>
<td>0.09</td>
<td>0.68</td>
<td>0.47 - 1.24</td>
<td>1.39</td>
</tr>
</tbody>
</table>

Table 2: Susceptibility of whitefly nymphs from field populations to Pyriproxyfen during 2012 by using a leaf dip bioassay method

<table>
<thead>
<tr>
<th>Site</th>
<th>Crop</th>
<th>n</th>
<th>χ^2</th>
<th>P</th>
<th>LC_{50} (mg [AI] L$^{-1}$)</th>
<th>Fiducial Limits</th>
<th>RR$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab colony</td>
<td>Cotton</td>
<td>918</td>
<td>3.16</td>
<td>0.81</td>
<td>0.56</td>
<td>0.40 - 0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>Mianwali</td>
<td>Cotton</td>
<td>432</td>
<td>29.03</td>
<td>0.65</td>
<td>1.33</td>
<td>0.68 - 2.92</td>
<td>2.92</td>
</tr>
<tr>
<td>Bahawalpur</td>
<td>Tomato</td>
<td>1298</td>
<td>23.71</td>
<td><0.001</td>
<td>1.92</td>
<td>0.73 - 2.18</td>
<td>1.22</td>
</tr>
<tr>
<td>Layyah</td>
<td>Tomato</td>
<td>1170</td>
<td>9.13</td>
<td><0.001</td>
<td>0.79</td>
<td>0.33 - 1.77</td>
<td>0.99</td>
</tr>
<tr>
<td>Multan</td>
<td>Cotton</td>
<td>797</td>
<td>7.78</td>
<td>0.05</td>
<td>0.98</td>
<td>0.49 - 1.68</td>
<td>1.32</td>
</tr>
</tbody>
</table>